
Outline
Introduction to integer overflows

Automated detection
Conclusion

Detecting and exploiting integer overflows

Guillaume TOURON

Laboratoire Verimag, Ensimag - Grenoble INP
Marie-Laure Potet, Laurent Mounier

20/05/11

1 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Introduction to integer overflows
Context
Binary representation
Integers misinterpretation

Automated detection
Static binary analysis
Data flow analysis
Implementation

Conclusion

2 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Context
Binary representation
Integers misinterpretation

Work subject

Subject

Binary code static analysis for vulnerabilities detection

I Focus on arithmetic problems

Application security is critical for information systems

I Programming bad practices

Goals

I Work with a professional environment : IDA Pro

I Develop some analysis to make easier vulnerabilities detection

3 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Context
Binary representation
Integers misinterpretation

Work subject

Subject

Binary code static analysis for vulnerabilities detection

I Focus on arithmetic problems

Application security is critical for information systems

I Programming bad practices

Goals

I Work with a professional environment : IDA Pro

I Develop some analysis to make easier vulnerabilities detection

3 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Context
Binary representation
Integers misinterpretation

Work subject

Subject

Binary code static analysis for vulnerabilities detection

I Focus on arithmetic problems

Application security is critical for information systems

I Programming bad practices

Goals

I Work with a professional environment : IDA Pro

I Develop some analysis to make easier vulnerabilities detection

3 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Context
Binary representation
Integers misinterpretation

Buffer overflow

4 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Context
Binary representation
Integers misinterpretation

Buffer overflow vulnerabilities

Exploitability

Integer overflow can lead to buffer overflow
Buffer overflow can lead to arbitrary code execution

Integer overflows and buffer overflows top ranked by CWE
Exploitability (CWE):

I Buffer overflow: High to Very High (3rd)

I Integers overflow: Medium (16th)

Conclusion

We have to care about arithmetic overflow and avoid them

5 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Context
Binary representation
Integers misinterpretation

Buffer overflow vulnerabilities

Exploitability

Integer overflow can lead to buffer overflow
Buffer overflow can lead to arbitrary code execution

Integer overflows and buffer overflows top ranked by CWE
Exploitability (CWE):

I Buffer overflow: High to Very High (3rd)

I Integers overflow: Medium (16th)

Conclusion

We have to care about arithmetic overflow and avoid them

5 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Context
Binary representation
Integers misinterpretation

Buffer overflow vulnerabilities

Exploitability

Integer overflow can lead to buffer overflow
Buffer overflow can lead to arbitrary code execution

Integer overflows and buffer overflows top ranked by CWE
Exploitability (CWE):

I Buffer overflow: High to Very High (3rd)

I Integers overflow: Medium (16th)

Conclusion

We have to care about arithmetic overflow and avoid them

5 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Context
Binary representation
Integers misinterpretation

x86 integers binary representation

Basic C types on x86 32 bits:

char short int long int
signed [-128,127] [-32,768,32,767] [−231,231 − 1] [−263,263 − 1]
unsigned [0,255] [0,65535] [0,232 − 1] [0,264 − 1]

Signed values representation

For negative values, MSB = 1 (2’s complement representation)

e.g −1 = 0xFFFFFFFF

6 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Context
Binary representation
Integers misinterpretation

x86 integers binary representation

Basic C types on x86 32 bits:

char short int long int
signed [-128,127] [-32,768,32,767] [−231,231 − 1] [−263,263 − 1]
unsigned [0,255] [0,65535] [0,232 − 1] [0,264 − 1]

Signed values representation

For negative values, MSB = 1 (2’s complement representation)

e.g −1 = 0xFFFFFFFF

6 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Context
Binary representation
Integers misinterpretation

Dangerousness of misinterpreting

First issue

Small negative integers can be interpreted as huge integers

Dangerous cases:

I Sanity checks

I Copy operations

I Array indexations

Dangerous functions

Some famous functions: strncpy, strncat, snprintf, memcpy...
These functions take a length unsigned parameter

7 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Context
Binary representation
Integers misinterpretation

Dangerousness of misinterpreting

First issue

Small negative integers can be interpreted as huge integers

Dangerous cases:

I Sanity checks

I Copy operations

I Array indexations

Dangerous functions

Some famous functions: strncpy, strncat, snprintf, memcpy...
These functions take a length unsigned parameter

7 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Context
Binary representation
Integers misinterpretation

Dangerousness of misinterpreting

First issue

Small negative integers can be interpreted as huge integers

Dangerous cases:

I Sanity checks

I Copy operations

I Array indexations

Dangerous functions

Some famous functions: strncpy, strncat, snprintf, memcpy...
These functions take a length unsigned parameter

7 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Context
Binary representation
Integers misinterpretation

Dangerousness of misinterpreting

First issue

Small negative integers can be interpreted as huge integers

Dangerous cases:

I Sanity checks

I Copy operations

I Array indexations

Dangerous functions

Some famous functions: strncpy, strncat, snprintf, memcpy...
These functions take a length unsigned parameter

7 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Context
Binary representation
Integers misinterpretation

Dangerousness of misinterpreting

First issue

Small negative integers can be interpreted as huge integers

Dangerous cases:

I Sanity checks

I Copy operations

I Array indexations

Dangerous functions

Some famous functions: strncpy, strncat, snprintf, memcpy...
These functions take a length unsigned parameter

7 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Context
Binary representation
Integers misinterpretation

Dangerousness of misinterpreting

memcpy example

void *memcpy(void *dest, const void *src, size t n);

⇒ What happens if this value is user-controlled?

Let’s take an example

Bad

#de f i n e LEN 512
. . .
v o i d vu l n (char ∗ s r c , i n t s) {

char ds t [LEN] ;
i n t s i z e = s ;
i f (s < LEN) {

memcpy(dst , s r c , s i z e) ;
}

}
. . .
v u l n (”Test ” , −1);

8 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Context
Binary representation
Integers misinterpretation

Dangerousness of misinterpreting

memcpy example

void *memcpy(void *dest, const void *src, size t n);

⇒ What happens if this value is user-controlled?

Let’s take an example

Bad

#de f i n e LEN 512
. . .
v o i d vu l n (char ∗ s r c , i n t s) {

char ds t [LEN] ;
i n t s i z e = s ;
i f (s < LEN) {

memcpy(dst , s r c , s i z e) ;
}

}
. . .
v u l n (”Test ” , −1);

8 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Context
Binary representation
Integers misinterpretation

Dangerousness of misinterpreting

Analysis

We have size = −1 (0xFFFFFFFF)
CPU compares size and 512 as signed values

⇒ size < 512 == True

Vulnerability

But memcpy takes a unsigned argument, so size = 232 − 1
By consequences, a buffer overflow occurs

A potential attacker can take control of flow execution

9 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Context
Binary representation
Integers misinterpretation

Dangerousness of misinterpreting

Analysis

We have size = −1 (0xFFFFFFFF)
CPU compares size and 512 as signed values

⇒ size < 512 == True

Vulnerability

But memcpy takes a unsigned argument, so size = 232 − 1
By consequences, a buffer overflow occurs

A potential attacker can take control of flow execution

9 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Context
Binary representation
Integers misinterpretation

Dangerousness of misinterpreting

Analysis

We have size = −1 (0xFFFFFFFF)
CPU compares size and 512 as signed values

⇒ size < 512 == True

Vulnerability

But memcpy takes a unsigned argument, so size = 232 − 1
By consequences, a buffer overflow occurs

A potential attacker can take control of flow execution

9 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Static binary analysis
Data flow analysis
Implementation

Pattern matching

Patterns

We look for interesting (= dangerous) patterns

Some patterns:
I Calls to dangerous functions (memcpy, strncpy...)

I Search signed comparisons on unsigned parameters

I Dangerous instructions

r ep movsd

I Array indexation

movl $0x2a ,−0x2c(%ebp ,%eax , 4)

10 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Static binary analysis
Data flow analysis
Implementation

Pattern matching

Patterns

We look for interesting (= dangerous) patterns

Some patterns:
I Calls to dangerous functions (memcpy, strncpy...)

I Search signed comparisons on unsigned parameters

I Dangerous instructions

r ep movsd

I Array indexation

movl $0x2a ,−0x2c(%ebp ,%eax , 4)

10 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Static binary analysis
Data flow analysis
Implementation

Pattern matching

Patterns

We look for interesting (= dangerous) patterns

Some patterns:
I Calls to dangerous functions (memcpy, strncpy...)

I Search signed comparisons on unsigned parameters

I Dangerous instructions

r ep movsd

I Array indexation

movl $0x2a ,−0x2c(%ebp ,%eax , 4)

10 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Static binary analysis
Data flow analysis
Implementation

Pattern matching

Patterns

We look for interesting (= dangerous) patterns

Some patterns:
I Calls to dangerous functions (memcpy, strncpy...)

I Search signed comparisons on unsigned parameters

I Dangerous instructions

r ep movsd

I Array indexation

movl $0x2a ,−0x2c(%ebp ,%eax , 4)

10 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Static binary analysis
Data flow analysis
Implementation

Data dependencies

Looking for interesting data dependencies

I Sensitive parameters (e.g size from memcpy)

I Counter registers (e.g %ecx for rep prefixed instructions)

Analysis steps

I Scan code to find interesting data
I Sensitive parameters (e.g size for memcpy)

I Backtrack these data for dependencies
I Apply code patterns to exhib vulnerabilities

I Misinterpretation (e.g comparison as signed values)

11 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Static binary analysis
Data flow analysis
Implementation

Data dependencies

Looking for interesting data dependencies

I Sensitive parameters (e.g size from memcpy)

I Counter registers (e.g %ecx for rep prefixed instructions)

Analysis steps

I Scan code to find interesting data
I Sensitive parameters (e.g size for memcpy)

I Backtrack these data for dependencies
I Apply code patterns to exhib vulnerabilities

I Misinterpretation (e.g comparison as signed values)

11 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Static binary analysis
Data flow analysis
Implementation

Data dependencies

Looking for interesting data dependencies

I Sensitive parameters (e.g size from memcpy)

I Counter registers (e.g %ecx for rep prefixed instructions)

Analysis steps

I Scan code to find interesting data
I Sensitive parameters (e.g size for memcpy)

I Backtrack these data for dependencies
I Apply code patterns to exhib vulnerabilities

I Misinterpretation (e.g comparison as signed values)

11 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Static binary analysis
Data flow analysis
Implementation

Data dependencies

Looking for interesting data dependencies

I Sensitive parameters (e.g size from memcpy)

I Counter registers (e.g %ecx for rep prefixed instructions)

Analysis steps

I Scan code to find interesting data
I Sensitive parameters (e.g size for memcpy)

I Backtrack these data for dependencies
I Apply code patterns to exhib vulnerabilities

I Misinterpretation (e.g comparison as signed values)

11 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Static binary analysis
Data flow analysis
Implementation

Backward analysis

Dependencies

For a block B we have: OUT (B) =
⋃

∀S∈Successors(B) IN(S)

12 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Static binary analysis
Data flow analysis
Implementation

Backward analysis

Transfer function

Computes new tainted variables set for a basic block B:

IN(B) = F B(StmSeq,OUT (B))

We must define a subset of x86 (grammar)
⇒ Focus on instructions that imply dependencies

Examples:

I mov [ε|s|sx |zx]

I Binary operations (add, addc, sub, sbb, and, xor, or...)

13 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Static binary analysis
Data flow analysis
Implementation

Backward analysis

Transfer function

Computes new tainted variables set for a basic block B:

IN(B) = F B(StmSeq,OUT (B))

We must define a subset of x86 (grammar)
⇒ Focus on instructions that imply dependencies

Examples:

I mov [ε|s|sx |zx]

I Binary operations (add, addc, sub, sbb, and, xor, or...)

13 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Static binary analysis
Data flow analysis
Implementation

Backward analysis

Transfer function

Computes new tainted variables set for a basic block B:

IN(B) = F B(StmSeq,OUT (B))

We must define a subset of x86 (grammar)
⇒ Focus on instructions that imply dependencies

Examples:

I mov [ε|s|sx |zx]

I Binary operations (add, addc, sub, sbb, and, xor, or...)

13 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Static binary analysis
Data flow analysis
Implementation

Environment

Several tools used:
I Binary analysis environment

I IDA Pro
Very used in security industry
Powerful, many features available

I CFG display
I Several plugins

I API
I First, IDAPython

API for Python script in IDA Pro
I Then, Paimei Framework

Layer above IDAPython (easier to use)

14 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Static binary analysis
Data flow analysis
Implementation

Output example

Example on CVE-201-3970

15 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Results

Pros:

I Automation

I Customization

Cons:

I False positive

Improvements:
I Improve data-flow analysis

I Symbolic computation engine ?

I Add more dangerous code patterns
I Allow users to write their own patterns

I Simple generic description language

16 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Results

Pros:

I Automation

I Customization

Cons:

I False positive

Improvements:
I Improve data-flow analysis

I Symbolic computation engine ?

I Add more dangerous code patterns
I Allow users to write their own patterns

I Simple generic description language

16 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Results

Pros:

I Automation

I Customization

Cons:

I False positive

Improvements:
I Improve data-flow analysis

I Symbolic computation engine ?

I Add more dangerous code patterns
I Allow users to write their own patterns

I Simple generic description language

16 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

General conclusion

Great subject, interesting people

First approach in research
I Documentation stage

I Backward analysis
I Vulnerabilities examples

I Implementation experimentation

Use new tools, techniques and frameworks

17 / 18

Outline
Introduction to integer overflows

Automated detection
Conclusion

Q & A

18 / 18

	Outline
	Introduction to integer overflows
	Context
	Binary representation
	Integers misinterpretation

	Automated detection
	Static binary analysis
	Data flow analysis
	Implementation

	Conclusion

